Пьер Ферма: биография, интересные факты из жизни известного человека, кто еще из известных людей родился, умер 17 августя

Рубрика: Краткие биографии

Пьер де Ферма (1601-1665) – французский математик-самоучка, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, полиглот. Автор Великой теоремы Ферма, «самой знаменитой математической загадки всех времен».

В биографии Пьера Ферма есть множество интересных фактов, о которых мы расскажем в данной статье.

Итак, перед вами краткая биография Пьера Ферма.

image

Биография Пьера Ферма

Пьер Ферма появился на свет 17 августа 1601 г. во французском городке Бомон-де-Ломань. Он рос и воспитывался в семье богатого торговца и чиновника Доминика Ферма, и его супруги Клэр де Лонг.

У Пьера был один брат и две сестры.

Детство, юность и образование

Биографы Пьера до сих пор не могут сойтись во мнении о том, где он изначально проходил обучение.

Принято считать, что мальчик учился в Наваррском коллеже. После этого он получал юридическое образование в Тулузе, а потом в Бордо и Орлеане.

В 30-летнем возрасте Ферма стал дипломированным юристом, в результате чего смог выкупить пост королевского советника парламента в Тулузе.

Пьер стремительно продвигался вверх по служебной лестнице, став членом Палаты эдиктов в 1648 г.  Именно тогда в его имени появилась частица «de», после чего он начал именоваться – Пьером де Ферма.

Благодаря успешной и размеренной работе юриста, мужчина имел немало свободного времени, которое он посвящал самообразованию. В тот момент биографии он увлекся математикой, изучая разные труды.

Научная деятельность

Когда Пьеру исполнилось 35 лет, он написал трактат «Введение к теории плоских и пространственных мест», где подробно изложил свое видение на аналитическую геометрию.

image
Великая теорема Ферма

В следующем году ученый сформулировал свою знаменитую «Великую теорему». Спустя 3 года он также сформулирует – Малую теорему Ферма.

Ферма вел переписку с самыми известными математиками, включая Мерсенна и Паскаля, с которым он дискутировал относительно теории вероятностей.

В 1637 г. разразилось знаменитое противостояние между Пьером и Рене Декартом. Первый в жесткой форме раскритиковал декартову «Диоптрику», а второй, дал разгромный отзыв на труды Ферма по анализу.

В скором времени Пьер не замедлил дать 2 верных решения – одно согласно статье Ферма, а другое – построенное на идеях «Геометрии» Декарта. В итоге стало очевидно, что метод Пьера оказался заметно проще.

Позже Декарт попросил прощения у своего оппонента, но до самой смерти относился к нему с предвзятостью.

Интересен факт, что открытия французского гения дошли до наших дней благодаря сборнику его крупной переписки с коллегами. Единственным его трудом на то время, изданным в печатном виде, был «Трактат о спрямлении».

Пьер Ферма раньше Ньютона сумел использовать дифференциальные методы для проведения касательных и вычисления площадей. И хотя он не систематизировал свои методы, сам Ньютон не отрицал того, что именно идеи Ферма подтолкнули его к разработке анализа.

Главной заслугой в научной биографии ученого принято считать создание теории чисел.

Ферма был чрезвычайно увлечен арифметическими задачами, которые нередко обсуждал с другими математиками. В частности, его интересовали задачи о магических квадратах и кубах, а также задания, связанные с закономерностями натуральных чисел.

Позже Пьер разработал метод систематического нахождения всех делителей числа и сформулировал теорему о возможности представления произвольного числа суммой не более 4-х квадратов.

Любопытно, что многие оригинальные методы решений задач и уровней, используемые Ферма, до сих пор остаются неизвестными. То есть ученый просто не оставил никаких сведений о том, как он решал то или иное задание.

Известен случай, когда Мерсенн попросил француза выяснить, является ли число 100 895 598 169 простым. Тот почти сразу сообщил, что данное число равняется 898423 умноженным на 112303, однако не рассказал, каким путем он пришел к такому выводу.

Выдающиеся достижения Ферма в области арифметики опережали свое время и были забыты на 70 лет, пока ими не увлекся Эйлер, опубликовавший систематическую теорию чисел.

Открытия Пьера бесспорно имели огромную значимость. Он разработал общий закон дифференцирования дробных степеней, сформулировал метод для проведения касательных к произвольной алгебраической кривой, а также описал принцип решения сложнейшей задачи нахождения длины произвольной кривой.

Ферма пошел дальше Декарта, когда захотел применить аналитическую геометрию к пространству. Ему удалось сформулировать основы теории вероятностей.

Пьер Ферма свободно владел 6 языками: французским, латинским, окситанским, греческим, итальянским и испанским.

Личная жизнь

В 30-летнем возрасте Пьер взял в жены двоюродную тетю по материнской линии по имени Луиза де Лонг.

В этом браке родилось пятеро детей: Клеман-Самуэль, Жан, Клэр, Кэтрин и Луиза.

Последние годы и смерть

В 1652 г. Ферма заразился чумой, которая тогда свирепствовала во многих городах и странах. Тем не менее, ему удалось излечиться от этой страшной болезни.

После этого ученый прожил еще 13 лет, умерев 12 января 1665 г. в возрасте 63 лет.

Современники отзывались о Пьере как о честном, порядочном, добрым и эрудированном человеке.

Фото Пьера Ферма

Если вам понравилась краткая биография Пьера Ферма – поделитесь ею в соцсетях. Если же вам нравятся биографии великих людей или интересные истории из их жизни, – подписывайтесь на сайт InteresnyeFakty.org.

Понравился пост? Нажми любую кнопку: Copyright © 2022

MAXCACHE: 0.57MB/0.00273 sec

Top

Пьер де Ферма – один из самых великих ученых в истории Франции. К его достижениям можно отнести создание таких трудов, как теория вероятностей и чисел, он является автором выдающихся теорем и первооткрывателем ряда математических свойств. С самых юных лет его родители уделяли огромное внимание образованию сына и, скорее всего, именно это повлияло на становление грандиозного ума. Всегда спокойный и деятельный, любознательный и строгий, ищущий и находящий – все это Пьер Ферма. Краткая биография поможет читателю подчерпнуть для себя все самое интересное об этой колоссальной по величине личности математика.

Ранние этапы

Пьер был рожден во Франции. Он является одним из первооткрывателей и создателей теории чисел, а также аналитической геометрии.

Длительное время говорили, что Пьер Ферма был рожден в 1595 году в Тулузе, но к середине девятнадцатого века в городе Бомоне в архивах была обнаружена запись, в которой было сказано, что летом 1601 года у советника города Доминика Ферма и его супруги появился на свет сын Пьер. Известно, что Доминик Ферма был очень уважаемым человеком в городе. Он был торговцем кожей. Детские годы Пьер провел рядом с родителями, а когда пришло время получать образование, он уехал в Тулузу – самый ближний город с университетами. Хорошенько изученное право на скамье университета дало Пьеру возможность работать адвокатом, но юноша решил перейти на службу к государству. В 1631 году Пьер был зачислен на место советника касс в парламент Тулузы. В это время Ферма уже был в браке с дочерью советника парламента, в котором он работал. Его жизнь была очень тихой и спокойной. Но благодаря ему сегодня люди, изучающие математику, могут почерпнуть для себя много интереснейшей информации, которая поистине бесценна. Даже в школьной программе активно уделяется внимание теме «Пьер Ферма и его открытия».

Увлечение историей

В юности будущий математик славился как тончайший знаток истории (в особенности античности), за его помощью обращались при издании классики Греции. Он оставил комментарии к трудам Синезуга, Атенея, Полюнуса, Фронтина, Теона Смирнского, внес правки в тексты Секста Эмпирика. Многие считают, что он с легкостью мог бы оставить свой след как выдающийся греческий филолог.

Однако благодаря тому, что он избрал иной путь, свет увидели его грандиозные по своей величине исследования. И поэтому большинство людей знает, что Пьер Ферма – математик.

О работах его при жизни в основном становилось известно посредствам широкой переписки, которую Ферма вел с иными учеными. Сборник сочинений, который он не единожды пробовал составить, так и не был претворен в жизнь. Собственно говоря, это логичный итог при такой загруженности на основной работе в суде. При жизни Пьера ни одно из массы его сочинений не было опубликовано.

Пьер Ферма: открытия в математике

Одна из первых работ в области математики у Пьера Ферма – возобновление двух утраченных книг-сочинений Аполлония под названием «О плоских местах». Колоссальную заслугу Пьера перед наукой большинство видит во введении им в аналитическую геометрию бесконечно малых величин. Он сделал этот крайне важный шаг в 1629 году. Также в конце двадцатых годов Пьер Ферма нашел способы нахождения касательных и экстремумов. А уже в 1636-м полностью завершенное описание метода нахождения было передано в руки Мерсенну, и с данным трудом мог ознакомиться кто угодно.

Полемика с Декартом

В 1637-38 годы французский математик Пьер Ферма бурным образом полемизировал с не менее выдающимся математиком Рене Декартом. Полемика возникала вокруг «Метода нахождения минимумов и максимумов». Декарт не до конца разобрался в методе и не понял его, по этой причине он подверг его несправедливой критике. Летом 1638 года Пьер Ферма посылает Мерсенну для передачи Декарту обновленное и более насыщенное подробностями изложение своего метода. В его письме отражается его сдержанный характер, потому что оно написано в крайне сухой и спокойной манере, но в то же время в нём есть некоторая доля иронии. В его письме содержится даже прямая насмешка над недопониманием Декарта. Ферма ни разу не вошел в бессмысленную и несдержанную полемику, он постоянно придерживался ровного и холодного тона. Это был не спор, а, скорее, беседа походила на общение преподавателя со студентом, который что-то не понял.

Систематика вычисления площадей

До Пьера Ферма способы нахождения площадей были разработаны итальянцем Кавальери. Однако к 1642 году Ферма открыл способ нахождения площадей, которые ограничены любыми «параболами» и «гиперболами». Ему удалось доказать, что площадь практически любой неограниченной фигуры все-таки может иметь конечное значение.

Задача спрямления кривых

Одним из самых первых начал изучение задачи на вычисление длин дуг кривых. Ему удалось подвести решение задачи к нахождению некоторых площадей. К вычислению площади сводились все задачи на кривые. Оставалась одна капля для того, чтобы ввести новое и более абстрактное понятие «интеграл».

В дальнейшем весь положительный исход способов по определению «площадей» был в поиске взаимосвязи с «методом экстремумов и касательных». Есть сведения, что Ферма уже видел четкую взаимосвязь, но ни один из его трудов не отражает этой точки зрения.

В отличие от большинства своих сотоварищей по делу, Пьер де Ферма являлся чистейшим математиком и никогда не пытался исследовать другие отрасли науки. Вероятно, именно по этой причине его мощнейший вклад во всю математику настолько глубок и велик.

О теории чисел

Самым главным вкладом Ферма в математику и по сей день считают создание абсолютно новой дисциплины – числовой теории. Ученый на протяжении всей своей трудовой деятельности интересовался арифметическими задачами, которые он порой придумывал и загадывал сам. В процессе нахождения ответов на вопросы, поставленные в задачах, Ферма частенько открывал что-то полностью новое и уникальное. Новые алгоритмы и законы, теоремы и свойства – все это когда-то легло в основу теории чисел, сегодня известной каждому школьнику.

Вклад в труды иных ученых

Таким образом, Пьер Ферма обнаружил закономерности для натуральных чисел и установил их на века. Труды о натуральных числах называются «теоремы арифметики». Одной из них, например, является знаменитая «малая теорема». В дальнейшем она послужила Эйлеру как частный случай для его трудов. Также известно, что именно работы Пьера Ферма задали основу теореме Лагранжа о сумме 4 квадратов.

Теорема Ферма

Конечно же, больше всего из трудов Пьера выделяется его великая и могучая теорема. Она многие годы и даже десятилетия заставляла «ломать головы» величайших математиков, и даже после того как она была опубликована в 1995 году, новые и очень разнообразные методы ее доказательств все еще поступают на кафедры с математическим уклоном во многие университеты мира.

Хотя Ферма оставил только краткие изложения своих трудов и обрывочную информацию, именно его открытия дали толчок многим другим выдающимся гениям математики. В его честь назвали один из наиболее престижных и старых лицеев во Франции – Лицей имени Пьера Ферма в Тулузе.

Смерть ученого

Во время своей активнейшей деятельности в области математики Ферма довольно быстрыми темпами продвигается вверх в судебном деле. В 1648 году Пьер становится членом Палаты эдиктов. Настолько высокая должность свидетельствовала о высочайшем положении ученого.

В Кастре, где Ферма стал эдиктом, он умирает при выезде на очередную сессию суда. Смерть пришла к математику в возрасте всего 64 лет. Старший сын ученого взялся донести труды отца людям и выпустил ряд его исследований.

Таков был Пьер Ферма. Биография его была насыщенной, а жизнь оставила след на все времена.

Труды этого гиганта математики невозможно переоценить и недооценить, ведь они заложили прочный фундамент для многих исследователей. Пьер Ферма, фото (портреты) которого приведены в статье, имел твердый характер, который всю жизнь помогал ему добиваться своих целей.

Пьер Ферма

Пьер де Ферма́ (фр. Pierre de Fermat, 1601—1665) — французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года — советник парламента в Тулузе. Блестящий полиглот. Наиболее известен формулировкой Великой теоремы Ферма.

Биография

Пьер Ферма родился 17 августа 1601 года в гасконском городке Бомон-де-Ломань (Франция). Его отец, Доминик Ферма, был зажиточным торговцем, вторым городским консулом; мать — преподавательница математики. Получил юридическое образование — сначала в Тулузе, а затем в Бордо (город) и Орлеане.

В 1631 году он выкупил должность королевского советника парламента (другими словами, члена высшего суда) в Тулузе. Быстрый служебный рост позволяет ему стать членом Палаты эдиктов в городе Кастр (1648). Именно этой должности он обязан добавлением к своему имени признака знатности — частицы de; с этого времени он становится Пьером де Ферма.

Пьер де Ферма умер 12 января 1665 года в городе Кастр.

Научная деятельность

Бюст Ферма в тулузском Капитолии

Работа советника в парламенте города Тулузы не мешала Ферма заниматься математикой. Постепенно он приобрёл славу одного из первых математиков Франции, хотя и не писал книг (научных журналов ещё не было), ограничиваясь лишь письмами к коллегам. Среди его корреспондентов были Р. Декарт, Ж. Дезарг, Ж. Роберваль и другие.

Открытия Ферма дошли до нас благодаря сборнику его обширной переписки (в основном через Мерсенна), изданной посмертно сыном Ферма.

В отличие от Галилея, Декарта и Ньютона, Ферма был чистым математиком — первым великим математиком новой Европы. Независимо от Декарта он создал аналитическую геометрию. Раньше Ньютона умел использовать дифференциальные методы для проведения касательных, нахождения максимумов и вычисления площадей. Правда, Ферма, в отличие от Ньютона, не свёл эти методы в систему, однако Ньютон позже признавался, что именно работы Ферма подтолкнули его к созданию анализа [1].

Но главная его заслуга — создание теории чисел.

Теория чисел

Математики Древней Греции со времён Пифагора коллекционировали диковинные факты о конкретных натуральных числах, иногда очень больших, но теорем о числах не доказывали (за несколькими исключениями). Лишь Диофант (III век н. э.) написал книгу «Арифметика», в которой были и отрицательные числа, и элементы символики, но, прежде всего, многочисленные факты о решении в целых числах алгебраических уравнений с несколькими неизвестными (их стали называть диофантовыми). Эта книга (не полностью) стала известна в Европе в XVI веке, а в 1621 году она была издана во Франции и стала настольной книгой Ферма.

Ферма постоянно интересовался арифметическими задачами, обменивался сложными задачами с современниками. Например, в своём письме, получившем название «Второго вызова математикам» (февраль 1657), он предложил найти общее правило решения уравнения Пелля в целых числах. В письме он предлагал найти решения при a=149, 109, 433. Полное решение задачи Ферма было найдено лишь в 1759 году Эйлером.

Начал Ферма с задач про магические квадраты и кубы, но постепенно переключился на закономерности натуральных чисел — арифметические теоремы. Несомненно влияние Диофанта на Ферма, и символично, что он записывает свои удивительные открытия на полях «Арифметики».

Ферма обнаружил, что если a не делится на простое число p, то число всегда делится на p (см. Малая теорема Ферма). Позднее Эйлер дал доказательство и обобщение этого важного результата: см. Теорема Эйлера.

Обнаружив, что число простое при k ≤ 4, Ферма решил, что эти числа простые при всех k, но Эйлер впоследствии показал, что при k=5 имеется делитель 641. До сих пор неизвестно, конечно или бесконечно множество простых чисел Ферма.

Эйлер доказал (1749) ещё одну гипотезу Ферма (сам Ферма редко приводил доказательства своих утверждений): простые числа вида 4k+1 представляются в виде суммы квадратов (5=4+1; 13=9+4), причём единственным способом, а для чисел вида 4k+3 такое представление невозможно. Эйлеру это доказательство стоило 7 лет трудов; сам Ферма доказывал эту теорему косвенно, изобретённым им индуктивным “методом бесконечного спуска”. Этот метод был опубликован только в 1879 году; впрочем, Эйлер восстановил суть метода по нескольким замечаниям в письмах Ферма и неоднократно успешно его применял. Позже усовершенствованную версию метода применяли Пуанкаре и Андре Вейль.

Ферма разработал способ систематического нахождения всех делителей числа, сформулировал теорему о возможности представления произвольного числа суммой не более четырех квадратов.

Ферма занимали «невозможные» задачи — задачи, не имеющие решений. Самое знаменитое утверждение о «невозможности» — Великая теорема Ферма (ВТФ).

Многие арифметические открытия Ферма опередили время и были забыты на 70 лет, пока ими не заинтересовался Эйлер, опубликовавший систематическую теорию чисел. Одна из причин этого – интересы большинства математиков переключились на математический анализ.

Математический анализ и геометрия

Ферма практически по современным правилам находил касательные к алгебраическим кривым. Именно эти работы подтолкнули Ньютона к созданию анализа[1].

В учебниках по математическому анализу можно найти важную лемму Ферма, или признак экстремума: в точках экстремума производная функции равна нулю.

Ферма сформулировал общий закон дифференцирования дробных степеней и распространил формулу интегрирования степени на случаи дробных и отрицательных показателей.

Развив идею Декарта, Ферма применил аналитическую геометрию к пространству. В работе «Введение к теории плоских и пространственных мест», ставшей известной в 1636 году, Ферма показал, что прямым соответствуют уравнения 1-й степени, а коническим сечениям — уравнения 2-й степени. Ферма исследовал общие виды уравнений 1-й и 2-й степени.

Другие достижения

Независимо от Паскаля Ферма разработал основы теории вероятностей. Именно с переписки Ферма и Паскаля (1654), в которой они, в частности, пришли к понятию математического ожидания и теоремам сложения и умножения вероятностей, отсчитывает свою историю эта замечательная наука. Результаты Ферма и Паскаля были приведены к книге Гюйгенса «О расчётах в азартной игре» (1657), первом руководстве по теории вероятностей.

Имя Ферма носит основной принцип геометрической оптики, в силу которого свет в неоднородной среде выбирает путь, занимающий наименьшее время (впрочем, Ферма считал, что скорость света бесконечна, и формулировал принцип более туманно). С этого тезиса начинается история главного закона физики — принципа наименьшего действия.

Великая теорема Ферма

Ферма широко известен благодаря т. н. великой (или последней) теореме Ферма. Теорема была сформулирована им в 1637 году, на полях книги «Арифметика» Диофанта с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы привести его на полях.

Вероятнее всего, его доказательство не было верным, так как позднее он опубликовал доказательство только для случая . Доказательство, найденное в 1994 году Эндрю Уайлсом, содержит 129 страниц и опубликовано в журнале «Annals of Mathematics» в 1995 году.

Простота формулировки этой теоремы привлекла много математиков-любителей, так называемых ферматистов. Даже и после решения Уайлса во все академии наук идут письма с «доказательствами» великой теоремы Ферма.

Примечания

  1. 1,0 1,1 С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 13.

См. также

  • Страница 1

    – энциклопедическая статья

  • Разное – на страницах

    : 2 , 3 , 4 , 5

  • Прошу вносить вашу информацию в «Пьер Ферма 1», чтобы сохранить ее

ТолкованиеПеревод

Ферма, Пьер
Пьер де Ферма
Pierre de Fermat
image
Дата рождения:

17 августа 1601(1601-08-17)

Место рождения:

Бомон-де-Ломань

Дата смерти:

12 января 1665(1665-01-12) (63 года)

Место смерти:

Кастр

Страна:

image Франция

Научная сфера:

математика

Известен как:

автор Великой теоремы Ферма

Пьер де Ферма́ (фр. Pierre de Fermat, 17 августа 1601(16010817) — 12 января 1665) — французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года — советник парламента в Тулузе. Блестящий полиглот. Наиболее известен формулировкой Великой теоремы Ферма.

Биография

Пьер Ферма родился 17 августа 1601 года в гасконском городке Бомон-де-Ломань (Beaumont-de-Lomagne, Франция). Его отец, Доминик Ферма, был зажиточным торговцем, вторым городским консулом. В семье, кроме Пьера, были ещё один сын и две дочери. Ферма получил юридическое образование — сначала в Тулузе, а затем в Бордо и Орлеане.

В 1631 году, успешно закончив обучение, Ферма выкупил должность королевского советника парламента (другими словами, члена высшего суда) в Тулузе. В этом же году он женился на дальней родственнице матери, Луизе де Лонг. У них было пятеро детей[1].

Быстрый служебный рост позволил Ферма стать членом Палаты эдиктов в городе Кастр (1648). Именно этой должности он обязан добавлением к своему имени признака знатности — частицы de; с этого времени он становится Пьером де Ферма.

Около 1652 года Ферма пришлось опровергать сообщение о своей кончине во время эпидемии чумы; он действительно заразился, но выжил.

В 1660 году планировалась его встреча с Паскалем, но из-за плохого здоровья обоих учёных встреча не состоялась[1].

Пьер де Ферма умер 12 января 1665 года в городе Кастр, во время выездной сессии суда. Первоначально его похоронили там же, в Кастре, но вскоре (1675) прах перенесли в семейную усыпальницу Ферма в церкви августинцев (Тулуза). Старший сын, Клеман-Самуэль, издал посмертное собрание его трудов, из которого современники и узнали о замечательных открытиях Пьера Ферма.

Современники характеризуют Ферма как честного, аккуратного, уравновешенного и приветливого человека, блестяще эрудированного как в математике, так и в гуманитарных науках, знатока многих древних и живых языков, на которых он писал неплохие стихи[2].

Научная деятельность

image image

Бюст Ферма в тулузском Капитолии

Работа советника в парламенте города Тулузы не мешала Ферма заниматься математикой. Постепенно он приобрёл славу одного из первых математиков Франции, хотя и не писал книг (научных журналов ещё не было), ограничиваясь лишь письмами к коллегам. Среди его корреспондентов были Р. Декарт, Ж. Дезарг, Ж. Роберваль и другие.

Открытия Ферма дошли до нас благодаря сборнику его обширной переписки (в основном через Мерсенна), изданной посмертно сыном Ферма.

В отличие от Галилея, Декарта и Ньютона, Ферма был чистым математиком — первым великим математиком новой Европы. Независимо от Декарта он создал аналитическую геометрию. Раньше Ньютона умел использовать дифференциальные методы для проведения касательных, нахождения максимумов и вычисления площадей. Правда, Ферма, в отличие от Ньютона, не свёл эти методы в систему, однако Ньютон позже признавался, что именно работы Ферма подтолкнули его к созданию анализа [3].

Главная же заслуга Пьера Ферма — создание теории чисел.

Теория чисел

Математики Древней Греции со времён Пифагора собирали и доказывали разнообразные утверждения, относящиеся к натуральным числам (например, методы построения всех пифагоровых троек, метод построения совершенных чисел и т. п.). Диофант Александрийский (III век н. э.) в своей «Арифметике» рассматривал многочисленные задачи о решении в рациональных числах алгебраических уравнений с несколькими неизвестными (ныне диофантовыми принято называть уравнения, которые требуется решить в целых числах). Эта книга (не полностью) стала известна в Европе в XVI веке, а в 1621 году она была издана во Франции и стала настольной книгой Ферма.

Ферма постоянно интересовался арифметическими задачами, обменивался сложными задачами с современниками. Например, в своём письме, получившем название «Второго вызова математикам» (февраль 1657), он предложил найти общее правило решения уравнения Пелля image в целых числах. В письме он предлагал найти решения при a=149, 109, 433. Полное решение задачи Ферма было найдено лишь в 1759 году Эйлером.

Начал Ферма с задач про магические квадраты и кубы, но постепенно переключился на закономерности натуральных чисел — арифметические теоремы. Несомненно влияние Диофанта на Ферма, и символично, что он записывает свои удивительные открытия на полях «Арифметики».

Ферма обнаружил, что если a не делится на простое число p, то число image всегда делится на p (см. Малая теорема Ферма). Позднее Эйлер дал доказательство и обобщение этого важного результата: см. Теорема Эйлера.

Обнаружив, что число image простое при k ≤ 4, Ферма решил, что эти числа простые при всех k, но Эйлер впоследствии показал, что при k=5 имеется делитель 641. До сих пор неизвестно, конечно или бесконечно множество простых чисел Ферма.

Эйлер доказал (1749) ещё одну гипотезу Ферма (сам Ферма редко приводил доказательства своих утверждений): простые числа вида 4k+1 представляются в виде суммы квадратов (5=4+1; 13=9+4), причём единственным способом, а для чисел, содержащих в своём разложении на простые множители простые числа вида 4k+3 в нечётной степени, такое представление невозможно. Эйлеру это доказательство стоило 7 лет трудов; сам Ферма доказывал эту теорему косвенно, изобретённым им индуктивным «методом бесконечного спуска». Этот метод был опубликован только в 1879 году; впрочем, Эйлер восстановил суть метода по нескольким замечаниям в письмах Ферма и неоднократно успешно его применял. Позже усовершенствованную версию метода применяли Пуанкаре и Андре Вейль.

Ферма разработал способ систематического нахождения всех делителей числа, сформулировал теорему о возможности представления произвольного числа суммой не более четырёх квадратов (теорема Лагранжа о сумме четырёх квадратов). Самое знаменитое его утверждение — «Великая теорема Ферма» (см. ниже).

Многие арифметические открытия Ферма опередили время и были забыты на 70 лет, пока ими не заинтересовался Эйлер, опубликовавший систематическую теорию чисел. Одна из причин этого — интересы большинства математиков переключились на математический анализ.

Математический анализ и геометрия

Ферма практически по современным правилам находил касательные к алгебраическим кривым. Именно эти работы подтолкнули Ньютона к созданию анализа[3]. В учебниках по математическому анализу можно найти важную лемму Ферма, или необходимый признак экстремума: в точках экстремума производная функции равна нулю.

Ферма сформулировал общий закон дифференцирования дробных степеней и распространил формулу интегрирования степени на случаи дробных и отрицательных показателей.

Наряду с Декартом, Ферма считается основателем аналитической геометрии. В работе «Введение к теории плоских и пространственных мест», ставшей известной в 1636 году, он первый провёл классификацию кривых в зависимости от порядка их уравнения, установил, что уравнение первого порядка определяет прямую, а уравнение второго порядка — коническое сечение. Развивая эти идеи, Ферма пошёл дальше Декарта и применил аналитическую геометрию к пространству.

Другие достижения

Независимо от Паскаля Ферма разработал основы теории вероятностей. Именно с переписки Ферма и Паскаля (1654), в которой они, в частности, пришли к понятию математического ожидания и теоремам сложения и умножения вероятностей, отсчитывает свою историю эта замечательная наука. Результаты Ферма и Паскаля были приведены в книге Гюйгенса «О расчётах в азартной игре» (1657), первом руководстве по теории вероятностей.

Имя Ферма носит основной принцип геометрической оптики, в силу которого свет в неоднородной среде выбирает путь, занимающий наименьшее время (впрочем, Ферма считал, что скорость света бесконечна, и формулировал принцип более туманно). С этого тезиса начинается история главного закона физики — принципа наименьшего действия.

Ферма перенёс на трёхмерный случай (внутреннего касания сфер) алгоритм Виета для задачи Аполлония (касания окружностей)[4].

Великая теорема Ферма

Для любого натурального числа image2″ border=”0″ /> уравнение

не имеет натуральных решений , и .

Ферма широко известен благодаря так называемой великой (или последней) теореме Ферма. Теорема была сформулирована им в 1637 году, на полях книги «Арифметика» Диофанта с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы привести его на полях.

Вероятнее всего, его доказательство не было верным, так как позднее он опубликовал доказательство только для случая . Доказательство, найденное в 1994 году Эндрю Уайлсом, содержит 129 страниц и опубликовано в журнале «Annals of Mathematics» в 1995 году.

Простота формулировки этой теоремы привлекла много математиков-любителей, так называемых ферматистов. Даже и после решения Уайлса во все академии наук идут письма с «доказательствами» великой теоремы Ферма.

Увековечение памяти

  • Старейший и самый престижный лицей Тулузы носит имя Ферма (Lycée Pierre de Fermat).

Примечания

  1. 1 2 Стиллвелл Д. Математика и ее история. — Москва-Ижевск: Институт компьютерных исследований, 2004, стр. 211—212.
  2. Белл Э. Т. Указ. соч., стр. 58.
  3. 1 2 С. И. Вавилов. Исаак Ньютон. 2-е дополненное издание. М.-Л.: Изд. АН СССР, 1945 г., глава 13.
  4. Барабанов О. О., Барабанова Л. П. Алгоритмы решения навигационной разностно-дальномерной задачи — от Аполлония до Коши // История науки и техники, 2008, № 11, С.2-21.

См. также

Полезное

Смотреть что такое “Ферма, Пьер” в других словарях:

  • Ферма Пьер — Пьер Ферма Пьер де Ферма (фр. Pierre de Fermat, 1601 1665)  французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года  советник парламента в… …   Википедия

  • Ферма Пьер — (Fermat) (1601 1665), французский математик, один из создателей аналитической геометрии и теории чисел (теоремы Ферма). Труды по теории вероятностей, исчислению бесконечно малых и оптике (принцип Ферма). * * * ФЕРМА Пьер ФЕРМА (Fermat) Пьер (1601 …   Энциклопедический словарь

  • Ферма, Пьер — Пьер Ферма. ФЕРМА (Fermat) Пьер (1601 65), французский математик, один из создателей аналитической геометрии и теории чисел. Труды по теории вероятностей, исчислению бесконечно малых и оптике (принцип Ферма).   …   Иллюстрированный энциклопедический словарь

  • Ферма Пьер — Ферма (Fermat) Пьер (17.8.1601, Бомон де Ломань, √ 12.1.1665, Кастр), французский математик. По профессии юрист: с 1631 был советником парламента в Тулузе. Автор ряда выдающихся работ, большинство из которых было издано после смерти Ф. его сыном …   Большая советская энциклопедия

  • ФЕРМА Пьер — (Fermat, Pierre) (1601 1665), французский математик, создатель теории чисел и один из основателей математического анализа. Родился 20 августа 1601 в Бомон де Ломане. Будучи по профессии юристом, состоял на государственной службе: с 1631 по 1648… …   Энциклопедия Кольера

  • Пьер Ферма — Пьер де Ферма (фр. Pierre de Fermat, 1601 1665)  французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года  советник парламента в Тулузе.… …   Википедия

  • Ферма П. — Пьер Ферма Пьер де Ферма (фр. Pierre de Fermat, 1601 1665)  французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года  советник парламента в… …   Википедия

  • Ферма — (Пьер Fеrmat) знаменитый французский математик 1601 65).Сын торговца; изучил законоведение и с 1631 г. до конца жизни былсоветником Тулузского парламента. Научные сведения Ф., и притом нетолько в области наук математических, поражали его… …   Энциклопедия Брокгауза и Ефрона

  • Ферма (значения) — Ферма: Ферма  конструкция, основные элементы которой работают на растяжение сжатие Ферма  сельскохозяйственное предприятие, принадлежащее фермеру Ферма  животноводческое сельскохозяйственное предприятие Ферма  в США обиходное… …   Википедия

  • ФЕРМА (Fermat) Пьер — (1601 65) французский математик, один из создателей аналитической геометрии и теории чисел (теоремы Ферма). Труды по теории вероятностей, исчислению бесконечно малых и оптике (принцип Ферма) …   Большой Энциклопедический словарь

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Егор Новиков
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий